9th January, 2023

Our Ref: 201019

Mr M Collins Collins Construction Materials Pty Ltd 214 MacArthur Road Elderslie NSW 2570

Dear Matt,

Re: Environmental Monitoring - Spring Farm: Report 2022-12

This is to confirm that groundwater sampling and dust monitoring at Spring Farm (see Appendix 1 for sample locations) has been carried out with the results summarised in Tables 1 and 2 respectively below.

(a) GROUNDWATER MONITORING

TAE	TABLE 1: SUMMARY OF GROUNDWATER MONITORING RESULTS.										
ANALYTE	VALUE	TARGET	DATE	TIME	TEMP						
EC (uS/cm)	169 (Non-Saline)	< 800 uS/cm									
рН	5.81 (Moderately alkaline)	4 – 6.50	13-12-2022	10.00	22°C						
Depth to Water Table (m) ¹	9.7	> 10 m									

Notes: 1. This value represents the depth to groundwater from the TOP OF THE STAND PIPE (670 mm above ground level); 2. Refer to Appendix 2 for laboratory analysis results and monthly summary data 3 Refer to Appendix 3 for quality control documentation.

The results indicate that groundwater is:

- Non-saline and is well below the nominated target of < 800uS/cm;
- Moderately alkaline falling marginally outside the nominated pH range of 4 6.50;
- Significantly exceeded the limit of the target depth > 10 m. The location of the monitoring bore was subject to a lengthy period of inundation by flood waters during March and April.

(b) DUST MONITORING

	TABLE 2: SI	UMMARY OF DUST DE	POSITION MONITORING R	RESULTS.	
SAMPLING PERIOD	LOCATION	TOTAL INSOLUBLE MATTER ¹ (g/m2/month)	Ash or Mineral Content (g/m2/month)	COMMENT	EMP targets (Ash or Mineral Content)
	1	2.8	NTA	Pass	
November	2 5.4		4.7	FAIL	≤ 4g / m2 per month
2022	3	1.7	NTA	Pass	per month

Notes: 1.Refer to Appendix 1 for monitoring locations. 2. Refer to Appendix 2 for laboratory analysis results and monthly summary data. Refer to Appendix 3 for quality control documentation.

The EMP target values were met at Monitoring Stations 1 and 3 but failed at Monitoring Station 2.

Yours faithfully,

Mart Rampe BSc (Applied Geology) Principal Consultant

APPENDIX 1: Collins Spring Farm Monitoring Locations

MS 1: Dust MS 2: Dust MS 3: Dust

GW-1: Groundwater

APPENDIX 2: Laboratory Analytical Results and Monthly Summary Data

CERTIFICATE OF ANALYSIS

Work Order : ES2245041

Page : 1 of 2 Laboratory

Client : HARVEST SCIENTIFIC SERVICES

: MART RAMPE

Contact : Customer Services ES

Address : PO BOX 427 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

: Environmental Division Sydney

NARELLAN NSW, AUSTRALIA 2567

Telephone : +61-2-8784 8555

COLLINS SPRING FARM **Date Samples Received Project** : 13-Dec-2022 14:10

Order number : 2022-12 C-O-C number

Sampler · MART RAMPE

Site

Quote number : EN/222

No. of samples received : 1 No. of samples analysed : 1 **Date Analysis Commenced** : 13-Dec-2022 Issue Date : 14-Dec-2022 14:11

Accreditation No. 825 Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

Contact

Telephone

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Wisam Marassa **Inorganics Coordinator** Sydney Inorganics, Smithfield, NSW Page : 2 of 2 Work Order : ES2245041

Client : HARVEST SCIENTIFIC SERVICES

Project : COLLINS SPRING FARM

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.

Analytical Results

Sub-Matrix: WATER	Sample ID		COLLINS GW1	 	 	
(Matrix: WATER)						
Sampling date / time				13-Dec-2022 10:00	 	
Compound	CAS Number	LOR	Unit	ES2245041-001	 	
				Result	 	
EA005P: pH by PC Titrator						
pH Value		0.01	pH Unit	5.81	 	
EA010P: Conductivity by PC Titrator						
Electrical Conductivity @ 25°C		1	μS/cm	169	 	

Groundwater Results

Date	Time	Temp. (°C)	EC (uS/cm)	рН	Depth to Water Table (m) from top of stand pipe	Comments
4/01/2016	11:00	20	409	5.00	11.50	
5/02/2016 3/03/2016	10:45 9:00	22 23	410 399	5.61 5.23	11.60 11.60	
6/04/2016	9:00	23	359	5.03	11.40	
5/05/2016	12:30	22	363	5.77	11.50	
3/06/2016	2:00	18	377	5.47	11.60	
4/07/2016 3/08/2016	12.30 10.00	13 12	372 261	5.32 6.84	10.70 10.70	
5/09/2016	10.00	12	250	5.62	10.40	
1/10/2016	10.00	12	252	6.16	10.50	
1/11/2016 1/12/2016	8.00 8.00	11 12	296 352	5.93 5.63	10.70 10.70	
6/01/2017	11.00	21	363	5.45	10.70	
3/02/2017	8.30	22	334	5.53	11.10	
3/03/2017	8.30	23	361	5.25	11.10	
4/04/2017 1/05/2017	8.30 10.30	16 16	392 294	5.46 6.09	10.80 10.70	
1/06/2017	8.00	8	373	5.12	11.00	
3/07/2017	8.00	2	356	5.63	10.90	
1/08/2017	9.00 9.00	12	346 352	6.00	11.00	
4/09/2017 10/10/2017	8.00	12 16	352 349	5.63 5.57	11.00 11.10	
6/11/2017	9.00	16	326	5.06	11.00	
5/12/2017	9.00	18	304	5.42	11.20	
11/01/2018 7/02/2018	9.00 10.00	22 25	305 303	5.72 4.94	11.10 11.40	
7/03/2018	9.00	20	302	4.86	11.40	
6/04/2018	10.00	22	318	5.43	11.40	
3/05/2018	10.00	12	307	5.37	11.50	
5/06/2018 6/07/2018	10.00 10.00	14 20	304 306	5.60 5.61	11.60 11.50	
2/08/2018	9.00	15	303	5.95	11.50	
3/09/2018	10.00	6	311	5.57	11.60	
3/10/2018	10.00	14 20	338	6.24	11.60	
5/11/2018 3/12/2018	10.00 8.30	20	324 324	6.25 6.09	11.60 11.60	
11/01/2019	10.00	23	291	6.07	11.50	
4/02/2019	8.00	22	264	5.72	11.50	
5/03/2019 1/04/2019	10.00 10.00	25 18	262 273	5.60 5.62	11.60 11.60	
1/04/2019	10.00	17	273	5.81	11.60	
31/05/2019	10.00	9	293	5.28	11.70	
27/06/2019	9.00	10	288	5.85	11.70	
2/08/2019 2/09/2019	9.00 10.00	5 13	318 318	7.48 5.37	11.80 11.80	
3/10/2019	10.00	21	310	6.57	11.80	
5/11/2019	10.00	23	318	5.78	11.80	
4/12/2019 2/01/2020	10.00 10.00	21	307 302	6.15 5.66	11.80 11.80	
4/02/2020	10.00	19	344	5.57	11.90	
3/03/2020	2.00	23	298	5.83	10.96	
1/04/2020	11.00	22	304	5.65	11.10	
4/05/2020 1/06/2020	11.00 11.00	21 19	299 272	5.55 6.14	11.10 11.40	
2/07/2020	8.00	3	243	6.79	11.50	
3/08/2020	10.00	5	267	6.02	11.50	
2/09/2020 1/10/2020	8.00 8.00	6 15	285 255	5.57 6.45	11.30 11.30	
3/11/2020	10.00	15	274	6.01	11.30	
11/12/2020	10.00	19	259	5.94	11.30	
11/01/2021	10.00	21	272	5.57	11.40	
9/02/2021 8/03/2021	10.00 11.00	21 27	291 293	5.76 5.73	11.40 11.45	
6/04/2021	10.00	23	288	5.78	11.00	
5/05/2021	10.00	15	291	5.59	10.40	
3/06/2021 5/07/2021	10.00 10.00	10	258 154	5.41 5.77	10.30 10.70	
4/08/2021	10.00	15	153	6.63	10.70	
1/09/2021	10.00	14	168	6.74	11.00	
5/10/2021	10.00	18	156	7.36	11.10	
2/11/2021 3/12/2021	10.00 10.00	20 21	163 174	6.07 5.65	11.10 11.10	
10/01/2022	10.00	25	178	6.83	11.00	
2/02/2022	10.00	21	214	5.52	11.00	
1/04/2022 2/05/2022	10.00 10.00	16 15	264 92	5.49 7.67	7.00 7.40	
6/06/2022	10.00	11	100	6.14	8.40	
1/07/2022	10.00	10	95	6.36	9.10	
4/08/2022	11.00	20	202	7.39	7.70	
2/09/2022 4/10/2022	10.00 10.00	14 15	223 235	5.85 5.60	8.90 9.40	
4/11/2022	10.00	18	188	5.83	8.60	
13/12/2022	10.00	22	169	5.81	9.70	

Dust Deposition Results

Period	TIM (g	/m2/m	onth)	Notes	Controls Implemented
			MS 3	, notes	Controls implemented
Jan-18	1.3	2.0	2.8		
	0.5	1.9	5.6	Very hot and dry month	
Mar-18	0.6	0.7	7.2	Very hot and dry month and at times windy	
Apr-18	6.7	1.1	2.6	MS-1 sample polluted - bird droppings?	
	0.4	0.6	2.5		
Jun-18	0.5	0.5	34.1	MS-1 sample highly polluted - anomalous result	
	0.4	0.8	0.7		
Aug-18	0.6	0.9	0.7		
Sep-18	1.0	0.8	1.5		
	0.7	1.2	1.4		
Nov-18	0.5	1.0	1.8		
Dec-18	2.4	0.7	2.0		
Jan-19	1.6	3.5	4.7	Very hot and dry month and at times windy	
Feb-19	1.0	2.5	3.6		
Mar-19	2.0	4.3	1.6	No significant activities noted	
Apr-19	0.7	3.2	1.2		
May-19	0.5	1.9	1.4	Fresh road works around Stations 2 and 3	
	0.7	1.3	1.1		
Jul-19	0.2	0.4	0.6		
Aug-19	0.4	0.8	1.4		
Sep-19	1.0	0.3	1.1		
Oct-19	1.5	2.3	3.8		
Nov-19	2.4	1.2	4.6	Month of high winds and smoke from bushfires	
Jan-20	1.2	2.8	2.2		
Feb-20	6.3	6.5	6.0	Month of high winds, bushfire smoke and drought con	ditions
Mar-20	0.5	11.1	1.2	Earthmoving activities near Station 2 contribute to ex	ceedance
Apr-20	0.9	1.2	0.8		
	1.4	0.8	1.4		
Jun-20	0.2	0.8	0.8		
Jul-20	0.3	1.4	0.4		
Aug-20	0.6	2.4	1.1		
Sep-20	0.8	7.7	0.9	Earthmoving activities near Station 2 contribute to ex	ceedance
Oct-20	1.6	28.3	1.6	Earthmoving activities near Station 2 contribute to ex	ceedance
Nov-20	10.4	22.4	2.2	Earthmoving activities near Station 2 contribute to ex	ceedance
Dec-20	0.8	6.7	3.4	Earthmoving activities near Station 2 contribute to ex	ceedance
Jan-21	0.3	4.7	0.8		
Feb-21	1.8	6.7	1.3	Staion 2 moved east to other side of drainage line	
	0.8	0.9	1.2		
Apr-21	0.1	3.1	0.7		
May-21	0.8	0.8	2.3		
	0.8	4.0	0.8		
	0.4	8.5	0.3		
	0.2	1.8	0.2		
Sep-21	1.5	4.2	0.7		
	1.7	0.3	1.4		
	0.5	0.7	1.1		
Dec-21	3.5	0.6	0.6		
	0.8	1.2	0.8		
	0.6	7.00	0.6		
	0	2.2	0.7	Station 1 lost due to flooding event	
<u> </u>	0	2.2	0.7	Station 1 lost due to flooding event	
	0	3.7	0.6	Station 1 lost due to flooding event	
	0.7		1.1		
	0.2	0.6	0.6		
	0	5.3	0.1	Station 1 lost due to flooding event	
	0.7	7.4	1.7		
<u> </u>	0.8	3.6	1.0		
	0.8	5.1	1.6		
Dec-22	2.8	5.4	1.7		

CERTIFICATE OF ANALYSIS

Work Order : EN2212163

: HARVEST SCIENTIFIC SERVICES

Contact : MART RAMPE

Address : PO BOX 427

NARELLAN NSW, AUSTRALIA 2567

Telephone

Client

: COLLINS SPRING FARM **Project**

Order number : 2022-12

C-O-C number

Sampler · MART RAMPE

Site

Quote number : EN/222

No. of samples received : 3 No. of samples analysed : 3 Page : 1 of 2

Laboratory : Environmental Division Newcastle

Contact

Address : 5/585 Maitland Road Mayfield West NSW Australia 2304

Telephone : +61 2 4014 2500 **Date Samples Received** : 14-Dec-2022 17:00

Date Analysis Commenced : 22-Dec-2022

Issue Date : 30-Dec-2022 08:52

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Zoran Grozdanovski Laboratory Operator Newcastle - Inorganics, Mayfield West, NSW Page : 2 of 2 Work Order : EN2212163

Client : HARVEST SCIENTIFIC SERVICES

Project : COLLINS SPRING FARM

ALS

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Analysis as per AS3580.10.1-2016. Samples passed through a 1mm sieve prior to analysis. NATA accreditation does not apply for results reported in g/m².mth as sampling data was provided by the client.
- Sample exposure period is 39 days which is outside the typical exposure period of 30 +/- 2 days as per AS3580.10.1.
- For dust analysis, the Limit of Reporting (LOR) referenced in the reports for deposited matter parameters represents the reporting increment rather than reporting limit.

Analytical Results

Sub-Matrix: DEPOSITIONAL DUST (Matrix: AIR)			Sample ID	COLLINS 1 04/11/22 - 13/12/22	COLLINS 2 04/11/22 - 13/12/22	COLLINS 3 04/11/22 - 13/12/22	
		Sampli	ng date / time	13-Dec-2022 00:00	13-Dec-2022 00:00	13-Dec-2022 00:00	
Compound	CAS Number	LOR	Unit	EN2212163-001	EN2212163-002	EN2212163-003	
				Result	Result	Result	
EA120: Ash Content							
Ash Content		0.1	g/m².month		4.7		
Ash Content (mg)		2	mg		107		
EA141: Total Insoluble Matter							
Total Insoluble Matter		0.1	g/m².month	2.8	5.4	1.7	
Total Insoluble Matter (mg)		2	mg	64	124	40	

QUALITY CONTROL REPORT

Work Order : ES2245041

: HARVEST SCIENTIFIC SERVICES

Contact : MART RAMPE

Address : PO BOX 427

NARELLAN NSW, AUSTRALIA 2567

Telephone : ----

Project : COLLINS SPRING FARM

Order number : 2022-12

C-O-C number

Client

Sampler : MART RAMPE

Site : ----

Quote number : EN/222

No. of samples received : 1
No. of samples analysed : 1

Page : 1 of 3

Laboratory : Environmental Division Sydney

Contact : Customer Services ES

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61-2-8784 8555

Date Samples Received : 13-Dec-2022
Date Analysis Commenced : 13-Dec-2022

Issue Date : 14-Dec-2022

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Wisam Marassa Inorganics Coordinator Sydney Inorganics, Smithfield, NSW

Page : 2 of 3 Work Order : ES2245041

Client : HARVEST SCIENTIFIC SERVICES

Project : COLLINS SPRING FARM

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER			Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)	
EA005P: pH by PC Ti	itrator (QC Lot: 4765905)									
ES2244311-001	Anonymous	EA005-P: pH Value		0.01	pH Unit	8.39	8.47	0.9	0% - 20%	
ES2244313-008	Anonymous	EA005-P: pH Value		0.01	pH Unit	8.52	8.49	0.4	0% - 20%	
EA010P: Conductivit	y by PC Titrator (QC Lot: 47	765904)								
ES2244809-010	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	<1	<1	0.0	No Limit	
ES2244311-001	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	3650	3640	0.3	0% - 20%	
ES2244313-008	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	778	781	0.4	0% - 20%	

Page : 3 of 3 Work Order : ES2245041

Client : HARVEST SCIENTIFIC SERVICES

Project : COLLINS SPRING FARM

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptable Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EA005P: pH by PC Titrator (QCLot: 4765905)									
EA005-P: pH Value			pH Unit		4 pH Unit	99.8	98.8	101	
					7 pH Unit	99.7	99.2	101	
EA010P: Conductivity by PC Titrator (QCLot: 4765904)									
EA010-P: Electrical Conductivity @ 25°C		1	μS/cm	<1	220 μS/cm	92.5	89.9	110	
				<1	2100 μS/cm	95.0	90.2	111	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES2245041** Page : 1 of 4

Client : HARVEST SCIENTIFIC SERVICES Laboratory : Environmental Division Sydney

 Contact
 : MART RAMPE
 Telephone
 : +61-2-8784 8555

 Project
 : COLLINS SPRING FARM
 Date Samples Received
 : 13-Dec-2022

 Site
 : --- Issue Date
 : 14-Dec-2022

Sampler : MART RAMPE No. of samples received : 1
Order number : 2022-12 No. of samples analysed : 1

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 4
Work Order : ES2245041

Client : HARVEST SCIENTIFIC SERVICES

Project : COLLINS SPRING FARM

Matrix: WATER

Matrix. WATER							
Method	E	xtraction / Preparation		Analysis			
Container / Client Sample ID(s)	Date extracted			Date analysed	Due for analysis	Days	
			overdue			overdue	
EA005P: pH by PC Titrator							
Clear Plastic Bottle - Natural							
COLLINS GW1				14-Dec-2022	13-Dec-2022	1	

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER

Evaluation: × = Holding time breach ; ✓ = Within holding time.

Method	Sample Date	Ex	traction / Preparation		Analysis				
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation		
EA005P: pH by PC Titrator									
Clear Plastic Bottle - Natural (EA005-P) COLLINS GW1	13-Dec-2022				14-Dec-2022	13-Dec-2022	sc .		
EA010P: Conductivity by PC Titrator									
Clear Plastic Bottle - Natural (EA010-P) COLLINS GW1	13-Dec-2022				14-Dec-2022	10-Jan-2023	√		

Page : 3 of 4
Work Order : ES2245041

Client : HARVEST SCIENTIFIC SERVICES

Project : COLLINS SPRING FARM

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER

Evaluation: **x** = Quality Control frequency not within specification; \checkmark = Quality Control frequency within specification.

2 Tallulation Quality Control in equation								
Quality Control Sample Type		Count		Rate (%)			Quality Control Specification	
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation		
Laboratory Duplicates (DUP)								
Conductivity by Auto Titrator	EA010-P	3	26	11.54	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
pH by Auto Titrator	EA005-P	2	15	13.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Laboratory Control Samples (LCS)								
Conductivity by Auto Titrator	EA010-P	3	26	11.54	8.33	✓	NEPM 2013 B3 & ALS QC Standard	
pH by Auto Titrator	EA005-P	2	15	13.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Method Blanks (MB)								
Conductivity by Auto Titrator	EA010-P	1	26	3.85	1.67	✓	NEPM 2013 B3 & ALS QC Standard	

Page : 4 of 4
Work Order : ES2245041

Client : HARVEST SCIENTIFIC SERVICES

Project : COLLINS SPRING FARM

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH by Auto Titrator	EA005-P	WATER	In house: Referenced to APHA 4500 H+ B. This procedure determines pH of water samples by automated ISE.
			This method is compliant with NEPM Schedule B(3)
Conductivity by Auto Titrator	EA010-P	WATER	In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method
			is compliant with NEPM Schedule B(3)

QUALITY CONTROL REPORT

Work Order : **EN2212163**

Client : HARVEST SCIENTIFIC SERVICES

Contact : MART RAMPE

Address : PO BOX 427

NARELLAN NSW, AUSTRALIA 2567

Telephone : ----

Project : COLLINS SPRING FARM

Order number : 2022-12

C-O-C number

Sampler : MART RAMPE

Site · ----

Quote number : EN/222

No. of samples received : 3
No. of samples analysed : 3

Page : 1 of 3

Laboratory : Environmental Division Newcastle

Contact

Address : 5/585 Maitland Road Mayfield West NSW Australia 2304

Telephone : +61 2 4014 2500
Date Samples Received : 14-Dec-2022
Date Analysis Commenced : 22-Dec-2022

Issue Date : 30-Dec-2022

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Zoran Grozdanovski Laboratory Operator Newcastle - Inorganics, Mayfield West, NSW

Page : 2 of 3
Work Order : EN2212163

Client : HARVEST SCIENTIFIC SERVICES

Project : COLLINS SPRING FARM

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

• No Laboratory Duplicate (DUP) Results are required to be reported.

Page : 3 of 3 Work Order : EN2212163

Client : HARVEST SCIENTIFIC SERVICES

Project : COLLINS SPRING FARM

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

• No Method Blank (MB) or Laboratory Control Spike (LCS) Results are required to be reported.

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **EN2212163** Page : 1 of 4

Client : HARVEST SCIENTIFIC SERVICES Laboratory : Environmental Division Newcastle

 Contact
 : MART RAMPE
 Telephone
 : +61 2 4014 2500

 Project
 : COLLINS SPRING FARM
 Date Samples Received
 : 14-Dec-2022

 Site
 : --- Issue Date
 : 30-Dec-2022

Sampler : MART RAMPE No. of samples received : 3
Order number : 2022-12 No. of samples analysed : 3

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 4
Work Order : EN2212163

Client : HARVEST SCIENTIFIC SERVICES

Project : COLLINS SPRING FARM

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: AIR

Evaluation: **x** = Holding time breach : ✓ = Within holding time.

Wattix. All					Lvaldation	Holding time	breach, with	ir noluling till
Method			Extraction / Preparation			Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EA120: Ash Content								
Dust Gauge (Bottle) - Copper Sulfate (EA120) COLLINS 2 - 04/11/22 - 13/12/22		13-Dec-2022				29-Dec-2022	12-Jan-2023	✓
EA141: Total Insoluble Matter								
Dust Gauge (Bottle) - Copper Sulfate (EA141) COLLINS 1 - 04/11/22 - 13/12/22, COLLINS 3 - 04/11/22 - 13/12/22	COLLINS 2 - 04/11/22 - 13/12/22,	13-Dec-2022				22-Dec-2022	12-Jan-2023	✓

Page : 3 of 4
Work Order : EN2212163

Client : HARVEST SCIENTIFIC SERVICES

Project : COLLINS SPRING FARM

Quality Control Parameter Frequency Compliance

No Quality Control data available for this section.

Page : 4 of 4 Work Order : EN2212163

Client : HARVEST SCIENTIFIC SERVICES

Project : COLLINS SPRING FARM

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Ash Content (AC)	EA120	AIR	In house: Referenced to AS 3580.10.1. A gravimetric procedure reporting Ash content in deposited dust.
Total Insoluble Matter (TIM)	EA141	AIR	In house: Referenced to AS 3580.10.1. A gravimetric procedure reporting Total Insoluble solids in deposited dust.